Friday, January 20, 2012

12v TRICKLE CHARGER

The 12v Trickle Charger circuit uses a TIP3055 power transistor to limit the current to the battery by turning off when the battery voltage reaches approx 14v or if the current rises above 2 amp. The signal to turn off this transistor comes from two other transistors - the BC557 and BC 547.
Firstly, the circuit turns on fully via the BD139 and TIP3055. The BC557 and BC 547 do not come into operation at the moment. The current through the 0.47R creates a voltage across it to charge the 22u and this puts a voltage between the base and emitter of the BC547. The transistors turn on slightly and remove some of the turn-on voltage to the BD139 and this turns off the TIP3055 slightly.
This is how the 2 amp max is created.
As the battery voltage rises, the voltage divider made up of the 1k8 and 39k creates a 0.65v between base and emitter of the BC557 and it starts to turn on at approx 14v. This turns on the BC 547 and it robs the BD136 of "turn-on" voltage and the TIP3055 is nearly fully turned off.
All battery chargers in Australia must be earthed. The negative of the output is taken to the earth pin.

LED DETECTS LIGHT


All LEDs give off light of a particular colour but some LEDs are also able to detect light. Obviously they are not as good as a device that has been specially made to detect light; such as solar cell, photocell, photo resistor, light dependent resistor, photo transistor, photo diode and other photo sensitive devices.
A green LED will detect light and a high-bright red LED will respond about 100 times better than a green LED, but the LED in this position in the circuit is classified as very high impedance and it requires a considerable amount of amplification to turn the detection into a worthwhile current-source.
All other LEDs respond very poorly and are not worth trying.
The accompanying circuit amplifies the output of the LED and enables it to be used for a number of applications.
The LED only responds when the light enters the end of the LED and this makes it ideal for solar trackers and any time there is a large difference between the dark and light conditions. It will not detect the light in a room unless the lamp is very close.

CLAP SWITCH

This circuit toggles the LEDs each time it detects a clap or tap or short whistle.
The second 10u is charged via the 5k6 and 33k and when a sound is detected, the negative excursion of the waveform takes the positive end of the 10u towards the 0v rail. The negative end of the 10u will actually go below 0v and this will pull the two 1N4148 diodes so the anode ends will have near to zero volts on them.
As the voltage drops, the transistor in the bi-stable circuit that is turned on, will have 0.6v on the base while the transistor that is turned off, will have zero volts on the base. As the anodes of the two signal diode are brought lower, the transistor that is turned on, will begin to turn off and the other transistor will begin to turn on via its 100u and 47k. As it begins to turn on, the transistor that was originally turned on will get less "turn-on" from its 100u and 47k and thus the two switch over very quickly. The collector of the third transistor can be taken to a buffer transistor to operate a relay or other device.

INCREASING OUTPUT PUSH-PULL

Some 555's do not swing rail-to-rail when 200mA is being delivered and the chip gets very hot when trying to deliver 200mA.
The solution is to add a push-pull output. The following arrangement has been chosen as it swings almost rail-to-rail but two faults need to be addressed.
Both transistors turn on during the brief interval when pin 3 is travelling from high to low or low to high.
This means the two transistors will put a "short" across the power rail.
The addition of the 4R4 will allow a high current to flow but the transistors will not be damaged. In addition, green LEDs on the base of each transistor reduces the time when both transistors are ON.
The animation shows how the transistors are turned on and off and deliver a high current to the load. The animation shows how NPN and PNP transistors follow an input signal in a push -pull arrangement using positive and negative supply rails. This is not the same as our circuit however the basic effect applies. The output is inverse of pin3 but pin3 only needs to deliver 10-50 milliamp and the transistors can deliver 1 amp or more to the load. This allows the 555 to be kept cool.

KNIGHT RIDER

In the Knight Rider circuit, the 555 is wired as an oscillator. It can be adjusted to give the desired speed for the display. The output of the 555 is directly connected to the input of a Johnson Counter (CD 4017). The input of the counter is called the CLOCK line.
The 10 outputs Q0 to Q9 become active, one at a time, on the rising edge of the waveform from the 555. Each output can deliver about 20mA but a LED should not be connected to the output without a current-limiting resistor (330R in the circuit above).
The first 6 outputs of the chip are connected directly to the 6 LEDs and these "move" across the display. The next 4 outputs move the effect in the opposite direction and the cycle repeats. The animation above shows how the effect appears on the display.
Using six 3mm LEDs, the display can be placed in the front of a model car to give a very realistic effect. The same outputs can be taken to driver transistors to produce a larger version of the display.


BFO METAL DETECTOR

The circuit shown must represent the limits of simplicity for a metal detector. It uses a single 4093 quad Schmitt NAND IC and a search coil -- and of course a switch and batteries. A lead from IC1d pin 11 needs to be attached to a MW radio aerial, or should be wrapped around the radio. If the radio has a BFO switch, switch this ON.

Since an inductor resists rapid changes in voltage (called reactance), any change in the logic level at IC1c pin 10 is delayed during transfer back to input pins 1 and 2. This is further delayed through propagation delays within the 4093 IC. This sets up a rapid oscillation (about 2 MHz), which is picked up by a MW radio. Any change to the inductance of L1 (through the presence of metal) brings about a change to the oscillator frequency. Although 2 MHz is out of range of the Medium Waves, a MW radio will clearly pick up harmonics of this frequency.

The winding of the coil is by no means critical, and a great deal of latitude is permissible. The prototype used 50 turns of 22 awg/30 swg (0.315 mm) enamelled copper wire, wound on a 4.7"/120 mm former. This was then wrapped in insulation tape. The coil then requires a Faraday shield, which is connected to 0V. A Faraday shield is a wrapping of tin foil around the coil, leaving a small gap so that the foil does not complete the entire circumference of the coil. The Faraday shield is again wrapped in insulation tape. A connection may be made to the Faraday shield by wrapping a bare piece of stiff wire around it before adding the tape. Ideally, the search coil will be wired to the circuit by means of twin-core or figure-8 microphone cable, with the screen being wired to the Faraday shield.

The metal detector is set up by tuning the MW radio to pick up a whistle (a harmonic of 2 MHz). Note that not every such harmonic works best, and the most suitable one needs to be found. The presence of metal will then clearly change the tone of the whistle. The metal detector has excellent stability, and it should detect a large coin at 80 to 90 mm, which for a BFO detector is relatively good. It will also discriminate between ferrous and non-ferrous metals through a rise or fall in tone.

WATER LEVEL PUMP CONTROLLER

This circuit provides automatic level control of a water tank.
The shorter steel rod is the "water high" sensor and the longer is the "water low" sensor. When the water level is below both sensors, pin 10 is low. If the water comes in contact with the longer sensor the output remains low until the shorter sensor is reached. At this point pin11 goes high and the transistor conducts. The relay is energized and the pump starts operating. When the water level drops the shorter sensor will be no longer in contact with the water, but the output of the IC will keep the transistor tuned ON until the water falls below the level of the longer rod. When the water level falls below the longer sensor, the output of the IC goes low and the pump will stop.
The switch provides reverse operation. Switching to connect the transistor to pin 11 of the IC will cause the pump will operate when the tank is nearly empty and will stop when the tank is full. In this case, the pump will be used to fill the tank and not to empty it.
Note: The two steel rods must be supported by a small insulated (wooden or plastic) board. The circuit can be used also with non-metal tanks, provided a third steel rod having about the same height as the tank is connected to the negative.
Adding an alarm to pin 11 will let you know the tank is nearly empty.

THE DOMINO EFFECT

Here's a project with an interesting name. The original design was bought over 40yearsa ago, before the introduction of the electret microphone. They used a crystal earpiece.
We have substituted it with a piezo diaphragm and used a quad op-amp to produce two building blocks. The first is a high-gain amplifier to take the few millivolts output of the piezo and amplify it sufficiently to drive the input of a counter chip. This requires a waveform of at least 6v for a 9v supply and we need a gain of about 600.
The other building block is simply a buffer that takes the high-amplitude waveform and delivers the negative excursions to a reservoir capacitor (100u electrolytic). The charge on this capacitor turns on a BC557 transistor and this effectively takes the power pin of the counter-chip to the positive rail via the collector lead.
The chip has internal current limiting and some of the outputs are taken to sets of three LEDs.
The chip is actually a counter or divider and the frequency picked up by the piezo is divided by 128 and delivered to one output and divided by over 8,000 by the highest-division output to three more LEDs The other lines have lower divisions.
This creates a very impressive effect as the LEDs are connected to produce a balanced display that changes according to the beat of the music.
The voltage on the three amplifiers is determined by the 3M3 and 1M voltage-divider on the first op-amp. It produces about 2v. This makes the output go HIGH and it takes pin 2 with it until this pin see a few millivolts above pin3. At this point the output stops rising.
Any waveform (voltage) produced by the piezo that is lower than the voltage on pin 3 will make the output go HIGH and this is how we get a large waveform.
This signal is passed to the second op-amp and because the voltage on pin 6 is delayed slightly by the 100n capacitor, is also produces a gain.
When no signal is picked up by the piezo, pin 7 is approx 2v and pin 10 is about 4.5v.  Because pin 9 is lower than pin 10, the output pin 8 is about 7.7v (1.3v below the supply rail) as this is as high as the output will go - it does not go full rail-to-rail.
The LED connected to the output removes 1.7v, plus 0.6v between base and emitter and this means the transistor is not turned on.
Any colour LEDs can be used and a mixture will give a different effect.
Click the link above for more details on the project, including photos and construction notes.

LONG DURATION TIMER

To get a long duration timer we can create an oscillator, called a CLOCK OSCILLATOR, and feed it to a number of flip-flops. A flip-flop is a form of bi-stable multivibrator, wired so an input signal will change the output on every second cycle. In other words it divides (halves) the input signal. When two of these are connected in a "chain" the input signal divides by 4. The CD4060 IC has 14 stages. These are also called BINARY DIVIDERS and the chip is also called a COUNTER. 
The IC also has components (called gates or inverters) on pins 9,10 and 11 that can be wired to produce an oscillator. Three external components are needed to produce the duration of the oscillations. In other words the frequency of the "clock signal."
The output of the oscillator is connected (inside the chip) to the Binary Dividers and each stage goes HIGH then LOW due to the signal it is receiving. Each stage rises and falls at a rate that is half the previous stage and the final stage provides the long time delay as it takes 213 clock cycles before going HIGH. We have only taken from Q10 in this circuit and the outline of the chip has been provided in the circuit so different outputs can be used to produce different timings.
The diode on the output "jams" the oscillator and stops it operating so the relay stays active when the time has expired.

10 SECOND ALARM

This circuit is activated for 10 seconds via the first two gates. They form a LATCH to keep the oscillator (made up of the next two gates) in operation, to drive the speaker.
The circuit consumes a few microamps in quiescent mode and the TOUCH PLATES can be any type of foil on a door knob or item that is required to be protected. The 10u sits in an uncharged condition and when the plates are touched, the voltage on pin 1 drops below 50% rail and makes pin 3 HIGH. This pulls pins 5 and 6 HIGH and makes pin 4 LOW. This keeps pin 3 HIGH, no matter if a HIGH or LOW is on pin1. This turns on the oscillator and the 10u starts to charge via the 100k resistor. After about 10 seconds, the voltage on pins 5 and 6 drops to below 50% rail voltage and pin 4 goes HIGH. If the TOUCH PLATES are not touched,  pin 3 will go LOW and the oscillator will stop.

12v TRICKLE CHARGER

The 12v Trickle Charger circuit uses a TIP3055 power transistor to limit the current to the battery by turning off when the battery voltage ...