Friday, January 20, 2012

THE DOMINO EFFECT

Here's a project with an interesting name. The original design was bought over 40yearsa ago, before the introduction of the electret microphone. They used a crystal earpiece.
We have substituted it with a piezo diaphragm and used a quad op-amp to produce two building blocks. The first is a high-gain amplifier to take the few millivolts output of the piezo and amplify it sufficiently to drive the input of a counter chip. This requires a waveform of at least 6v for a 9v supply and we need a gain of about 600.
The other building block is simply a buffer that takes the high-amplitude waveform and delivers the negative excursions to a reservoir capacitor (100u electrolytic). The charge on this capacitor turns on a BC557 transistor and this effectively takes the power pin of the counter-chip to the positive rail via the collector lead.
The chip has internal current limiting and some of the outputs are taken to sets of three LEDs.
The chip is actually a counter or divider and the frequency picked up by the piezo is divided by 128 and delivered to one output and divided by over 8,000 by the highest-division output to three more LEDs The other lines have lower divisions.
This creates a very impressive effect as the LEDs are connected to produce a balanced display that changes according to the beat of the music.
The voltage on the three amplifiers is determined by the 3M3 and 1M voltage-divider on the first op-amp. It produces about 2v. This makes the output go HIGH and it takes pin 2 with it until this pin see a few millivolts above pin3. At this point the output stops rising.
Any waveform (voltage) produced by the piezo that is lower than the voltage on pin 3 will make the output go HIGH and this is how we get a large waveform.
This signal is passed to the second op-amp and because the voltage on pin 6 is delayed slightly by the 100n capacitor, is also produces a gain.
When no signal is picked up by the piezo, pin 7 is approx 2v and pin 10 is about 4.5v.  Because pin 9 is lower than pin 10, the output pin 8 is about 7.7v (1.3v below the supply rail) as this is as high as the output will go - it does not go full rail-to-rail.
The LED connected to the output removes 1.7v, plus 0.6v between base and emitter and this means the transistor is not turned on.
Any colour LEDs can be used and a mixture will give a different effect.
Click the link above for more details on the project, including photos and construction notes.

No comments:

Post a Comment

12v TRICKLE CHARGER

The 12v Trickle Charger circuit uses a TIP3055 power transistor to limit the current to the battery by turning off when the battery voltage ...